
Review on Parallelized Multipattern Matching
Using Optimized Parallel Aho-Corasick Algorithm

on GPU
Prachi Oke, Prof. Mrs. A. S. Vaidya

 Department of Computer Engineering, University of Pune
GES’s RHSCOE, Nashik, INDIA

Abstract— Pattern Matching is a very computationally
intensive operation in the Network Intrusion detection
Systems where large amount of data has to be matched against
the known patterns. With the advent in technology, storage
capacity and link speed has increased, due to which there has
been an increase in the amount of data that needs to be
matched against the known patterns. But the traditional
algorithms fail to handle this increased amount of data. So we
need such a hardware and software solution that would help to
handle this large amount of incoming data in the Network
intrusion Detection Systems to match it with the known
patterns or we can say virus signatures. So we will be using a
parallel algorithm that matches an input string with the
known patterns (virus signature) to check for the presence of
any pattern in an input string and return the same if any. We
will be running this algorithm on NVIDIA Geforce GTX 680
GPU with CUDA 6.5 programming model. And we will be
introducing several optimization techniques for the Parallel
AC algorithm that would eventually result in the reduction of
time, cost, and memory usage required to execute Parallel AC
algorithm on GPU.

Keywords— Pattern Matching, Snort, KMP algorithm, AC
algorithm, GPU.

I. INTRODUCTION

A Network Intrusion Detection System like Snort [5],
uses an Aho-Corasick algorithm to match the input data
with the known attack patterns. This algorithm proves to be
inadequate to meet the throughput requirements for high-
speed networks and it tends to drop the packet data when it
cannot handle the large amount of incoming data.

So, we will be using a Parallel Aho-Corasick algorithm
which takes Snort virus signature as input pattern and
constructs a DFA to find multiple occurrences of patterns in
an incoming packet data. We will be running the algorithm
on GPU because, GPUs have a highly parallel structure
which makes them more effective than general purpose
CPUs for algorithms where processing of large blocks of
data is done in parallel [6]. The performance of Parallel
Aho-Corasick algorithm run on GPU would result in higher
throughput as compared to running a tradition Aho-
Corasick algorithm on CPU.

Here, NVIDIA Geforce GTX 680 GPU with NVIDIA
CUDA 6.5 programming model will be used. This GPU is
considered to be a very fast and efficient GPU. TABLE I
shows the specifications of NVIDIA Geforce GTX 680
GPU [7]. And NVIDIA CUDA 6.5 programming model is

the latest version of most pervasive parallel computing
platform and programming model [10]. It is available as a
free download at www.nvidia.com/getcuda. It provides
several new features. Reference [9] gives the features as:

1. CUDA 6.5 provides programmers with a robust, easy-
to-use platform to develop advanced scientific, engineering,
mobile and High Performance Computing applications

2. Support for Visual Studio 2013: CUDA 6.5 expands
host compiler support to include Microsoft Visual Studio
2013 for Windows.

3. Double Precision Performance Improvements: The
core math libraries in CUDA 6.5 introduce significant
performance improvements for many double precision
functions.

4. CUDA 6.5 significantly improves Multi-Process
Service (MPS) performance: reducing launch latency from
7 to 5 microseconds, and reducing launch and synchronize
latency from 35 to 15 microseconds.

5. CUDA programmers need to understand the
constraints of the kernel and the GPU they will be working
on and must decide about the block size to be used for the
kernel launch, so that it must result in good performance.
And a common way used to choose a good block size is to
aim for high occupancy. Where high occupancy means the
ratio of the number of active warps per multiprocessor to
the maximum number of warps that can be active on the
multiprocessor at once. With CUDA 6.5 calculating this
occupancy is no more a tricky job as it was before, as it
includes several new runtime features to aid in occupancy
calculations.

TABLE II
NVIDIA GEFORCE GTX 680 GPU SPECIFICATION

CUDA Cores 1536

Base Clock (MHz) 1006

Boost Clock (MHz) 1058

Texture Fill Rate (Billion/Sec) 128.8

Memory speed 6.0 Gbps

Standard Memory Config. 2048MB

Memory Interface Width 256-bit GDDR5

Memory Bandwidth (GB/sec) 192.2

Bus Support PCI Express 3.0

Certified for Windows 7 Yes

Prachi Oke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7191-7194

www.ijcsit.com 7191

II. LITERATURE SURVEY

String and Pattern matching is required in numerous
applications. Many String and Pattern matching algorithms
have been developed and many optimizations for those
algorithms have also been done till date. The problem of
string and pattern matching is, given a string ‘S’ and a
pattern ‘p’, it deals with finding a pattern ‘p’ in string ‘S’
and if ‘p’ does occur in ‘S’, then returning the position in
‘S’ where ‘p’ occurs. And the most usual approach to solve
this problem is to start with the first element in pattern ‘p’
and compare it with the first element in String ‘S’, if the
elements match then proceed with comparing second
element of ‘p’ with second element of ‘S’ and so forth.
Now, if the mismatch occurs at any position, then it starts
again by comparing first element of pattern ‘p’ with the
second element of String ‘S’ and so forth. Thus,
unnecessary shifts of pattern ‘p’ are done or in other words,
backtracking on ‘S’ is done. These repetitive comparisons
lead to the runtime of O(mn).

To overcome the drawback of this usual approach, an
algorithm that matches a single pattern in the given string at
a time, like the KMP algorithm [2], [8] was developed.
KMP algorithm needs to use two functions, first to calculate
the prefix function ‘п’ and the other is the matcher function.
The prefix function ‘п’ encapsulates the information needed
to avoid the unnecessary shifts of pattern ‘p’ or we can say
backtracking on ‘S’ never occurs. The matcher function
takes as an input the string ‘S’, pattern ‘p’ and the prefix
function ‘п’ and finds the occurrence of ‘p’ in ‘S’ and
returns the number of shifts of ‘p’ after which occurrence is
found. The prefix function requires O(m) running time
while its matcher function requires O(n) running time.

Then there are algorithms that match multiple patterns in
the String at a time, like Aho-Corasick (AC) algorithm [1].
The AC algorithm uses a state machine to recognize the
patterns in the input stream. Also it introduces a failure
transition, to backtrack a state machine to recognize the
patterns starting at any location of an input stream. The
Aho-Corasick algorithm requires three functions, Goto
function, Failure function, and Output function. Fig. 1
shows these three functions. Where a Goto function tells us
that, in the state machine constructed from the known
patterns, if at a state ‘s’ an input ‘a’ is given, whether or not
it leads to a valid transition to the next state. That is,
whether g(s, a) = validnextstate or g(s, a) = fail. When the
goto function reports fail, that is, when there is no valid
transition to the next state, the Failure function tells us
about the state at which the transition must be made in case
of no valid next state transition. The failure function for all
the states is calculated depth wise from depth 1 then depth 2
and so on. First the failure function f(s) of all the states of
depth 1 are made 0. And for all the remaining states the
failure function is calculated as, if f(s) = s', the machine
repeats the cycle with s' as the current state and a as the
current input symbol. The Output function is updated while
computing the failure function. That is, when we are
computing f(s) = s', outputs of ‘s’ are merged with the
output of s'. if ‘n’ is the input stream length then the best-
case and worst complexity of AC algorithm would be O(n).

Fig. 1. Goto, Failure and Output function. [1].

In traditional Aho-Corasick algorithm, there are no
threads running in parallel to find multiple patterns in the
text or in the given string. There, a single thread is
responsible for finding all the patterns in the string by
traversing through the DFA. When for an input character
there is no valid next state transition we say a failure has
occurred. And as there is a single thread, it needs to jump to
some other state from where it can continue matching the
patterns again. So there was a need for failure transitions,
which makes a thread to jump at some other state to
continue finding the patterns, when a failure at a particular
state occurs. For example for the patterns AB,” “ABG,”
“BEDE,” and “ED”, an AC state machine would look like
this as shown in Fig. 2. If at a state 2, an input character
other than ‘G’ is taken, it would lead to a failure transition
and would make a thread to jump at state 4.

Fig. 2. Aho-Corasick state machine of the patterns “AB,” “ABG,”
“BEDE,” and “ED.” [4]

Improvements to the traditional Aho-Corasick algorithm
(AC) were done like, Data Parallel Approach to Aho-
Corasick algorithm [3], [4], which tries to parallelize the
AC algorithm. Data Parallel Approach to AC algorithm
divides the input stream into multiple chunks and each of
the chunks is allocated a thread. These individual threads
perform an AC algorithm over those chunks.

Prachi Oke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7191-7194

www.ijcsit.com 7192

Fig. 3. Data Parallel Approach with boundary detection problem. [4]

But the problem with the Data Parallel Approach to AC

algorithm is detecting the boundary. That is, problem arises
when pattern occurs at the boundary of the two chunks. In
this case the pattern cannot be identified by either of the
two threads allocated to those two chunks. So to resolve
this problem each thread must scan an addition length
across the boundary which is equal to longest pattern length
- 1. The best-case and the worst-case complexity of Data
Parallel Approach to AC algorithm is, O(n/s + m), where n
is the input stream length, s is the number of chunks and m
is the longest pattern length.

III. PROPOSED SYSTEM

In Parallel Aho-Corasick algorithm, the failure
transitions of the AC state machine are all removed also,
the self-loop transition of the initial state has been removed.
Because, in Parallel Aho-Corasick algorithm a thread is
allocated to every byte of an input stream which is
responsible for finding the pattern beginning at its starting
position. Which means, as shown in the Fig. 4, a thread
located at ‘A’ is responsible for finding a pattern that begins
with ‘A’ by traversing an AC state machine without failure
transitions, similarly a thread located at ‘B’ is responsible
for finding a pattern that begins with ‘B’ and so on.

Fig. 4. Parallel Aho-Corasick Algorithm [4].

So if the patterns that begin at the position located by
their respective threads do not exist, then such threads
terminate immediately. The Fig. 5 shows an AC state
machine without failure transition for the patterns “AB,”
“ABG,” “BEDE,” and “ED.”

We can see from the Fig. 5, that the patterns either begin
with ‘A’, ‘B’ or ‘E’. Thus any such threads that are
allocated

Fig. 5. Parallel AC state machine without failure transitions for the patterns
“AB,” “ABG,” “BEDE,” and “ED” [4]

to the characters like, ‘G’, ‘D’, ‘C’ (form Fig. 4) or
basically other than the characters ‘A’, ‘B’ or ‘E’ would
terminate immediately. So, all the three threads that are
allocated to characters ‘A’, ‘B’ and ‘E’ would all run in
parallel. Let us look at an example below.

Fig. 6 Example of Parallel Aho-Corasick Algorithm without failure
transition [4].

In the Fig. 6 given above the threads tn, tn+1, tn+2 are
allocated to characters ‘A’, ‘B’ and ‘E’ and will traverse
AC state machine without failure transitions, parallely.
Thread tn will traverse an AC state machine and will find a
pattern “AB” and the moment it takes an input “E”, it
would terminate as there is no valid next state transition for
input “E” at state 2. Similarly, threads tn+1 and tn+2 would
find and match the patterns “BEDE” and “ED” and would
terminate. The other threads that are allocated to characters
“X” would terminate immediately as there is no valid next
state transition for this character at state 0. Thus, even
though this algorithm allocates a very large amount of
threads, many of them can terminate at a very early stage.
Thus, instead of using one thread to find all the patterns in
the string, the threads can run in parallel and thus reduce the
time required in finding and matching the patterns in the
string. So, we can say, each thread of Parallel AC algorithm
without any failure transitions would run in the best time of
O(1) and the worst time of O(m) where m is the longest
pattern length.

A. Contribution
In this research work, we will be introducing several

optimization techniques for Parallel Aho-Corasick
algorithm on GPU, including, reducing the memory
requirement needed to store the Parallel AC algorithm table
which is a state transition table. The Parallel AC algorithm
table gives the next state information where each row
contains 256 columns storing the next state information
corresponding to each ASCII alphabet. As the Parallel AC
algorithm removes most transitions, the corresponding state
transition table is very sparse. Thus the state transition table,
which is sparse, can be compressed and can be stored as

Prachi Oke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7191-7194

www.ijcsit.com 7193

one dimensional array. In this way memory usage will be
reduced. Then, we can reduce the latency of global memory
access as Global memory of GPU is the slowest memory.
While storing the data to GPU’s memory, the host transfers
the data from host’s memory to GPU’s memory, which is
usually the Global memory. Thus storing the data in the
texture memory instead, which is considered to be the
fastest memory, would reduce the latency of data access.
Then, we can reduce the time and cost incurred in
transferring the data from host’s memory to GPUs memory
by directly storing the data in the GPUs memory without
first requiring it to store it in the Host’s memory and then
transferring it to the device’s memory. Also, we can achieve
a data transfer overlap where CPU and GPU can work as a
single entity. Which means all the computationally
intensive operation will be done on GPU and at the same
time less computationally intensive operation can be made
to run on CPU. This again would lead to reduction in time
and more throughputs.

IV. CONCLUSIONS

We have seen single pattern and multiple pattern
matching algorithms and comparisons between the same.
Also we saw how several optimizations for the Parallel
Aho-Corasick algorithm can be done. The Parallel Aho-
Corasick algorithm will run on NVIDIA Geforce GTX 680
GPU with CUDA 6.5 programming model. By parallelizing
the traditional Aho-Corasick algorithm we can reduce the
time required for its execution. Further, Running the

Parallel Aho-Corasick algorithm on GPU would accelerate
its speed as compared to running the same algorithm on
CPU. The proposed optimizations for the Parallel Aho-
Corasick algorithm would further reduce the time, cost, and
memory usage required to run the Parallel Aho-Corasick
algorithm on GPU.

REFERENCES
[1] A.V. Aho and M.J. Corasick, Efficient String Matching: An Aid to

Bibliographic Search, Comm. ACM, vol. 18, no. 6, pp. 333-340,
1975.

[2] DONALD E. KNUTH, JAMES H. MORRIS, AND VAUGHAN R.
PRATT, Fast Pattern Matching in Strings, SIAM J. COMPUT. Vol.
6, No. 2, June 1977.

[3] A. Tumeo, O. Villa, and D. Sciuto, E_cient Pattern Matching on
GPUs for Intrusion Detection Systems, Proc. Seventh ACM Intl
Conf. Computing Frontiers, 2010.

[4] Cheng-Hung Lin, Lung-Sheng Chien, and Shih-Chieh Chang,
Accelerating Pattern Matching Using a Novel Parallel Algorithm on
GPUs, IEEE Transactions On Computers, Vol. 62, No. 10, October
2013.

[5] Snort, https://www.snort.org/.
[6] GPU, http://en.wikipedia.org/wiki/ Graphics_processing_unit
[7] Geforce GTX680 Specification, http://www. geforce.Com /

hardware/
/desktop-gpus/geforce-gtx-680/specifications.

[8] KMP algorithm by example, http://www.cs.utexas.edu/users/moore/
best-ideas/string-searching/kpm example.htmlstep01.

[9] CUDA 6.5 features, http://devblogs.nvidia.com/parallelforall/10-
ways-cuda-6-5-improves-performance-productivity/

[10] About CUDA 6.5, http://www.scientific-computing.com/press-
releases/product_details.php?product_id=1935/

Prachi Oke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7191-7194

www.ijcsit.com 7194

