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Abstract— Pattern Matching is a very computationally 
intensive operation in the Network Intrusion detection 
Systems where large amount of data has to be matched against 
the known patterns. With the advent in technology, storage 
capacity and link speed has increased, due to which there has 
been an increase in the amount of data that needs to be 
matched against the known patterns. But the traditional 
algorithms fail to handle this increased amount of data. So we 
need such a hardware and software solution that would help to 
handle this large amount of incoming data in the Network 
intrusion Detection Systems to match it with the known 
patterns or we can say virus signatures. So we will be using a 
parallel algorithm that matches an input string with the 
known patterns (virus signature) to check for the presence of 
any pattern in an input string and return the same if any. We 
will be running this algorithm on NVIDIA Geforce GTX 680 
GPU with CUDA 6.5 programming model. And we will be 
introducing several optimization techniques for the Parallel 
AC algorithm that would eventually result in the reduction of 
time, cost, and memory usage required to execute Parallel AC 
algorithm on GPU. 
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I. INTRODUCTION 

A Network Intrusion Detection System like Snort [5], 
uses an Aho-Corasick algorithm to match the input data 
with the known attack patterns. This algorithm proves to be 
inadequate to meet the throughput requirements for high-
speed networks and it tends to drop the packet data when it 
cannot handle the large amount of incoming data. 

So, we will be using a Parallel Aho-Corasick algorithm 
which takes Snort virus signature as input pattern and 
constructs a DFA to find multiple occurrences of patterns in 
an incoming packet data. We will be running the algorithm 
on GPU because, GPUs have a highly parallel structure 
which makes them more effective than general purpose 
CPUs for algorithms where processing of large blocks of 
data is done in parallel [6]. The performance of Parallel 
Aho-Corasick algorithm run on GPU would result in higher 
throughput as compared to running a tradition Aho-
Corasick algorithm on CPU. 

Here, NVIDIA Geforce GTX 680 GPU with NVIDIA 
CUDA 6.5 programming model will be used. This GPU is 
considered to be a very fast and efficient GPU. TABLE I 
shows the specifications of NVIDIA Geforce GTX 680 
GPU [7]. And NVIDIA CUDA 6.5 programming model is 

the latest version of most pervasive parallel computing 
platform and programming model [10]. It is available as a 
free download at www.nvidia.com/getcuda.  It provides 
several new features. Reference [9] gives the features as:  

1. CUDA 6.5 provides programmers with a robust, easy-
to-use platform to develop advanced scientific, engineering, 
mobile and High Performance Computing applications  

2. Support for Visual Studio 2013: CUDA 6.5 expands 
host compiler support to include Microsoft Visual Studio 
2013 for Windows.  

3. Double Precision Performance Improvements: The 
core math libraries in CUDA 6.5 introduce significant 
performance improvements for many double precision 
functions.  

4. CUDA 6.5 significantly improves Multi-Process 
Service (MPS) performance: reducing launch latency from 
7 to 5 microseconds, and reducing launch and synchronize 
latency from 35 to 15 microseconds. 

5. CUDA programmers need to understand the 
constraints of the kernel and the GPU they will be working 
on and must decide about the block size to be used for the 
kernel launch, so that it must result in good performance. 
And a common way used to choose a good block size is to 
aim for high occupancy. Where high occupancy means the 
ratio of the number of active warps per multiprocessor to 
the maximum number of warps that can be active on the 
multiprocessor at once. With CUDA 6.5 calculating this 
occupancy is no more a tricky job as it was before, as it 
includes several new runtime features to aid in occupancy 
calculations.  

TABLE II 
NVIDIA GEFORCE GTX 680 GPU SPECIFICATION 

CUDA Cores 1536 

Base Clock (MHz) 1006 

Boost Clock (MHz) 1058 

Texture Fill Rate (Billion/Sec) 128.8 

Memory speed 6.0 Gbps 

Standard Memory Config. 2048MB 

Memory Interface Width 256-bit GDDR5 

Memory Bandwidth (GB/sec) 192.2 

Bus Support PCI Express 3.0 

Certified for Windows 7 Yes 
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II. LITERATURE SURVEY 

String and Pattern matching is required in numerous 
applications. Many String and Pattern matching algorithms 
have been developed and many optimizations for those 
algorithms have also been done till date. The problem of 
string and pattern matching is, given a string ‘S’ and a 
pattern ‘p’, it deals with finding a pattern ‘p’ in string ‘S’ 
and if ‘p’ does occur in ‘S’, then returning the position in 
‘S’ where ‘p’ occurs. And the most usual approach to solve 
this problem is to start with the first element in pattern ‘p’ 
and compare it with the first element in String ‘S’, if the 
elements match then proceed with comparing second 
element of ‘p’ with second element of ‘S’ and so forth. 
Now, if the mismatch occurs at any position, then it starts 
again by comparing first element of pattern ‘p’ with the 
second element of String ‘S’ and so forth. Thus, 
unnecessary shifts of pattern ‘p’ are done or in other words, 
backtracking on ‘S’ is done. These repetitive comparisons 
lead to the runtime of O(mn). 

To overcome the drawback of this usual approach, an 
algorithm that matches a single pattern in the given string at 
a time, like the KMP algorithm [2], [8] was developed. 
KMP algorithm needs to use two functions, first to calculate 
the prefix function ‘п’ and the other is the matcher function. 
The prefix function ‘п’ encapsulates the information needed 
to avoid the unnecessary shifts of pattern ‘p’ or we can say 
backtracking on ‘S’ never occurs. The matcher function 
takes as an input the string ‘S’, pattern ‘p’ and the prefix 
function ‘п’ and finds the occurrence of ‘p’ in ‘S’ and 
returns the number of shifts of ‘p’ after which occurrence is 
found. The prefix function requires O(m) running time 
while its matcher function requires O(n) running time. 

Then there are algorithms that match multiple patterns in 
the String at a time, like Aho-Corasick (AC) algorithm [1]. 
The AC algorithm uses a state machine to recognize the 
patterns in the input stream. Also it introduces a failure 
transition, to backtrack a state machine to recognize the 
patterns starting at any location of an input stream. The 
Aho-Corasick algorithm requires three functions, Goto 
function, Failure function, and Output function. Fig. 1 
shows these three functions. Where a Goto function tells us 
that, in the state machine constructed from the known 
patterns, if at a state ‘s’ an input ‘a’ is given, whether or not 
it leads to a valid transition to the next state. That is, 
whether g(s, a) = validnextstate or g(s, a) = fail. When the 
goto function reports fail, that is, when there is no valid 
transition to the next state, the Failure function tells us 
about the state at which the transition must be made in case 
of no valid next state transition. The failure function for all 
the states is calculated depth wise from depth 1 then depth 2 
and so on. First the failure function f(s) of all the states of 
depth 1 are made 0. And for all the remaining states the 
failure function is calculated as, if f(s) = s', the machine 
repeats the cycle with s' as the current state and a as the 
current input symbol. The Output function is updated while 
computing the failure function. That is, when we are 
computing f(s) = s', outputs of ‘s’ are merged with the 
output of s'. if ‘n’ is the input stream length then the best-
case and worst complexity of AC algorithm would be O(n). 

 
Fig. 1.  Goto, Failure and Output function. [1]. 

In traditional Aho-Corasick algorithm, there are no 
threads running in parallel to find multiple patterns in the 
text or in the given string. There, a single thread is 
responsible for finding all the patterns in the string by 
traversing through the DFA. When for an input character 
there is no valid next state transition we say a failure has 
occurred. And as there is a single thread, it needs to jump to 
some other state from where it can continue matching the 
patterns again. So there was a need for failure transitions, 
which makes a thread to jump at some other state to 
continue finding the patterns, when a failure at a particular 
state occurs. For example for the patterns AB,” “ABG,” 
“BEDE,” and “ED”, an AC state machine would look like 
this as shown in Fig. 2. If at a state 2, an input character 
other than ‘G’ is taken, it would lead to a failure transition 
and would make a thread to jump at state 4. 

 

 
Fig. 2.  Aho-Corasick state machine of the patterns “AB,” “ABG,” 
“BEDE,” and “ED.” [4] 

Improvements to the traditional Aho-Corasick algorithm 
(AC) were done like, Data Parallel Approach to Aho-
Corasick algorithm [3], [4], which tries to parallelize the 
AC algorithm. Data Parallel Approach to AC algorithm 
divides the input stream into multiple chunks and each of 
the chunks is allocated a thread. These individual threads 
perform an AC algorithm over those chunks.  
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Fig. 3. Data Parallel Approach with boundary detection problem. [4] 

 
But the problem with the Data Parallel Approach to AC 

algorithm is detecting the boundary. That is, problem arises 
when pattern occurs at the boundary of the two chunks. In 
this case the pattern cannot be identified by either of the 
two threads allocated to those two chunks. So to resolve 
this problem each thread must scan an addition length 
across the boundary which is equal to longest pattern length 
- 1. The best-case and the worst-case complexity of Data 
Parallel Approach to AC algorithm is, O(n/s + m), where n 
is the input stream length, s is the number of chunks and m 
is the longest pattern length. 

III. PROPOSED SYSTEM 

In Parallel Aho-Corasick algorithm, the failure 
transitions of the AC state machine are all removed also, 
the self-loop transition of the initial state has been removed. 
Because, in Parallel Aho-Corasick algorithm a thread is 
allocated to every byte of an input stream which is 
responsible for finding the pattern beginning at its starting 
position. Which means, as shown in the Fig. 4, a thread 
located at ‘A’ is responsible for finding a pattern that begins 
with ‘A’ by traversing an AC state machine without failure 
transitions, similarly a thread located at ‘B’ is responsible 
for finding a pattern that begins with ‘B’ and so on. 

 
Fig. 4. Parallel Aho-Corasick Algorithm [4]. 

So if the patterns that begin at the position located by 
their respective threads do not exist, then such threads 
terminate immediately. The Fig. 5 shows an AC state 
machine without failure transition for the patterns “AB,” 
“ABG,” “BEDE,” and “ED.” 

We can see from the Fig. 5, that the patterns either begin 
with ‘A’, ‘B’ or ‘E’. Thus any such threads that are 
allocated  

 
Fig. 5. Parallel AC state machine without failure transitions for the patterns 
“AB,” “ABG,” “BEDE,” and “ED” [4] 

to the characters like, ‘G’, ‘D’, ‘C’ (form Fig. 4) or 
basically other than the characters ‘A’, ‘B’ or ‘E’ would 
terminate immediately. So, all the three threads that are 
allocated to characters ‘A’, ‘B’ and ‘E’ would all run in 
parallel. Let us look at an example below.  
 

 
Fig. 6 Example of Parallel Aho-Corasick Algorithm without failure 
transition [4]. 

In the Fig. 6 given above the threads tn, tn+1, tn+2 are 
allocated to characters ‘A’, ‘B’ and ‘E’ and will traverse 
AC state machine without failure transitions, parallely. 
Thread tn will traverse an AC state machine and will find a 
pattern “AB” and the moment it takes an input “E”, it 
would terminate as there is no valid next state transition for 
input “E” at state 2. Similarly, threads tn+1 and tn+2 would 
find and match the patterns “BEDE” and “ED” and would 
terminate. The other threads that are allocated to characters 
“X” would terminate immediately as there is no valid next 
state transition for this character at state 0. Thus, even 
though this algorithm allocates a very large amount of 
threads, many of them can terminate at a very early stage. 
Thus, instead of using one thread to find all the patterns in 
the string, the threads can run in parallel and thus reduce the 
time required in finding and matching the patterns in the 
string. So, we can say, each thread of Parallel AC algorithm 
without any failure transitions would run in the best time of 
O(1) and the worst time of O(m) where m is the longest 
pattern length. 

A. Contribution 
In this research work, we will be introducing several 

optimization techniques for Parallel Aho-Corasick 
algorithm on GPU, including, reducing the memory 
requirement needed to store the Parallel AC algorithm table 
which is a state transition table. The Parallel AC algorithm 
table gives the next state information where each row 
contains 256 columns storing the next state information 
corresponding to each ASCII alphabet. As the Parallel AC 
algorithm removes most transitions, the corresponding state 
transition table is very sparse. Thus the state transition table, 
which is sparse, can be compressed and can be stored as 
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one dimensional array. In this way memory usage will be 
reduced. Then, we can reduce the latency of global memory 
access as Global memory of GPU is the slowest memory. 
While storing the data to GPU’s memory, the host transfers 
the data from host’s memory to GPU’s memory, which is 
usually the Global memory. Thus storing the data in the 
texture memory instead, which is considered to be the 
fastest memory, would reduce the latency of data access. 
Then, we can reduce the time and cost incurred in 
transferring the data from host’s memory to GPUs memory 
by directly storing the data in the GPUs memory without 
first requiring it to store it in the Host’s memory and then 
transferring it to the device’s memory. Also, we can achieve 
a data transfer overlap where CPU and GPU can work as a 
single entity. Which means all the computationally 
intensive operation will be done on GPU and at the same 
time less computationally intensive operation can be made 
to run on CPU. This again would lead to reduction in time 
and more throughputs. 

IV. CONCLUSIONS 

We have seen single pattern and multiple pattern 
matching algorithms and comparisons between the same. 
Also we saw how several optimizations for the Parallel 
Aho-Corasick algorithm can be done. The Parallel Aho-
Corasick algorithm will run on NVIDIA Geforce GTX 680 
GPU with CUDA 6.5 programming model. By parallelizing 
the traditional Aho-Corasick algorithm we can reduce the 
time required for its execution. Further, Running the 

Parallel Aho-Corasick algorithm on GPU would accelerate 
its speed as compared to running the same algorithm on 
CPU. The proposed optimizations for the Parallel Aho-
Corasick algorithm would further reduce the time, cost, and 
memory usage required to run the Parallel Aho-Corasick 
algorithm on GPU. 
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